COMPARATIVE STUDY ON SELF COMPACTING CONCRETE BY PARTIAL REPLACEMENT OF RECYCLED AGGREGATES

1Peela Sravya,2Shaik Hamidullah Shariff, 3Kalyan Kumar Arnapalli ,4Kaligana Naveen ,5Divya Anusha Naidu 1student, Department of Civil Engineering, Godavari Institute of Engineering &Technology(A), Rajahmundry, AP, India 2Student, Department of Civil Engineering, Godavari Institute of Engineering & Technology(A), Rajahmundry, AP, India 3Student, Department of Civil Engineering, Godavari Institute of Engineering &Technology(A), Rajahmundry, AP, India 4Student, Department of Civil Engineering, Godavari Institute of Engineering & Technology(A), Rajahmundry, AP, India 5Assistant Professor, Department of Civil Engineering, Godavari Institute of Engineering & Technology(A), Rajahmundry, AP, India

Abstract: This paper presents the influence of different amounts of recycled coarse aggregate (RCA) obtained from a demolished building on the properties of self-compacting concrete (SCC) and compared the results with self- compacting concrete (SCC) containing 100% natural coarse aggregate (NCA). Important properties such as physical and mechanical properties of natural and recycled aggregates are carried out. NCA is partially replaced with RCA by an amount 5%,10%,15%, 20%,25%, 30%,35% and 40%. The effect of RCA on the properties of SCC in green state (e.g. Slump flow test, V-Funnel test and L-Box Test) and properties of concrete in hardened state (e.g. compressive strength, flexural strength, and Split tensile Strength) are studied. The mix design was carried out for M30 grade of concrete. The present study recommends SCC marginally achieves required compressive strength up to 40% replacement of RCA. This paper is to study the effect of utilizing recycled coarse aggregate as partial replacement for natural coarse aggregate on the properties of SCC in fresh and hardened state.

Keywords - Self-compacting concrete, Recycled aggregate, Fly ash.

I. INTRODUCTION

Self-compacting concrete:

Self-compacting concrete (SCC) is a kind of concrete with excellent deformability and segregation resistance, was first developed at Japan in 1980. It is able to flow under its own weight and can completely fill the formwork even within congested reinforcement. SCC has favourable characteristics such as high fluidity, good segregation resistance and the distinctive self-compatibility without any need for vibration during the placing process and so noiseless construction. The unique characteristics of SCC are a rapid rate of concrete placement with very less time. SCC offers a very high level of homogeneity; minimize the concrete void spaces and have uniform concrete strength and also provides the superior level of finishing and durability of structure. SCC also achieves same engineering properties and durability as traditional vibrated concrete. The use of SCC has gained a wider acceptance in recent years.

Properties of Self-Compacting Concrete:

Self-compacting concrete (SCC) has three essential fresh properties: filling ability, passing ability and segregation resistance. Additional properties, such as robustness and consistence retention, are also important in applications of SCC. Robustness refers to the ability of SCC to retain its fresh property when the quality and quantity of constituent materials and the environmental conditions change. Consistence retention refers to the period of duration of the fresh properties. A number of commonly used tests are subsequently described for evaluating the fresh properties. There is no difference in test methods for hardened properties (strength, stiffness, and durability etc.) between SCC and self-compacting concrete with recycled aggregate. Both fresh and hardened properties are key to the successful application of SCC. SCC therefore can be designed by fresh or hardened requirements.

2. LITERATURE REVIEW

K.C. Panda, P.K. Bal, had studied on Important properties such as physical and mechanical properties of natural and recycled aggregates are carried out. NCA is partially replaced with RCA by an amount 10%, 20%,30% and 40%. The effect of RCA on the properties of SCC in green state (e.g. Slump flow test, V-Funnel test and L-Box Test) and properties of concrete in hardened state (e.g. compressive strength, flexural strength, and Split tensile Strength) are studied. The mix design was carried out for M25 grade of concrete. The experimental results indicate that the compressive strength, flexural strength and split tensile strength of the SCC with 100% natural aggregate is less than the normal vibrated concrete (NVC) with 100% natural aggregate and the strength of SCC decreases with an increase in recycled aggregate (RA) replacement ratios.

Prashant O. Modani, had studied on use of recycle aggregate in SCC. In this study coarse recycled aggregate (RCA) are used in the production of self-compacting concrete (SCC) in varying percentage replacements of natural coarse aggregate (NCA) from 0% to 100% with increment of 20%. This investigation is an attempt to examine the influence of recycled aggregate on strength of self-compacting concrete. It is observed that recycled aggregate can be

© 2019 JETIR April 2019, Volume 6, Issue 4

effectively used in the production of SCC without any significant reduction in strength and durability. This has encouraged the use of recycled aggregate in concrete which not only allows for a more efficient life cycle of natural resources but also contributes to environmental protection leading to sustainable development.

3. Materials and their properties Cement

Ordinary Portland cement, 53 Grade can be used care is taken that it is freshly produced and from a single producer. A cement is a binder. A substance used for construction that sets, hardens, and adheres to other materials to bind them together.

SL.No	Properties	Results
1	Fineness	4%
2	Specific gravity	3.15
3	Normal consistency	28%
4	Initial setting time	30 mins
5	Final setting time	600 mins

Table-1 properties of cement

Fly Ash:

Fly Ash is a by-product of a thermal power station, after combustion of coal and production of power. Flyash is generated from coal fired generation units. the physical properties and chemical properties of fly ash used are shown in table-2.

Table-2 properties of flyash

SL.No	Properties	Results
1.	Specific gravity	2.52

CHEMICAL COMPOSITION OF FLY ASH

S.NO.	DESCRIPTION OF PROPERTY	AVERAGE RANGE OF VALUES (%)
1.	SiO ₂	60.98
2.	Al2O3	27.5
3.	TiO ₂	1.27
4.	Fe ₂ O ₃	4.1
5.	MgO	0.78
6.	CaO	1.65
7.	K ₂ O	0.15
8.	Na ₂ O	0.17
9.	LOI	5.35

Fine aggregate:

Fine aggregates can be natural or manufactured. The grading must be uniform throughout the work. According to IS 383-1970 fine aggregate falls under zone II. The moisture content or absorption characteristics must be closely monitored, as quality of SCC will be sensitive to such changes. Particles smaller than 0.125mm are considered as Fines, which contribute to the fine content.

Table-3	properties	of fine	aggregate
---------	------------	---------	-----------

SL.No	Properties	Results
1.	Specific gravity	2.64
2.	Bulk density	32%
3.	Fineness modulus	3.2

Coarse aggregate:

Aggregate of size 10-12mm is desirable for structures having congested reinforcement. Wherever possible aggregates of size higher than 20mm could also be used. Well-graded cubical or rounded aggregates are desirable. Aggregates should be of uniform quality with respect to shape and grading.

Recycled coarse aggregates:

Recycled aggregates (RA) are produced from the re-processing of mineral waste materials, with the largest source being the construction and demolition waste. The density of the RA is lower than natural aggregates and RA have a greater water absorption value compared to natural aggregates. As a result, proper mix design is required for obtaining the desired qualities for concrete made with RA.

	14	inie-4 physical propertie	3
SL.No	Properties	Natural coarse aggregate	Recycled aggregate
1.	Specific gravity	2.7	2.3
2.	Bulk density	1560 kg/m ³	1050 kg/m ³
3.	Fineness modulus	5.6	2.81

Table-4 physical properties

Superplasticizer:

In present days Superplasticizers are powerful enough to keep a concrete mix highly workable for more than one hour with much less water. It is free from chloride and low alkali in nature. Dosages of plasticizer evaluated by trail mixes.

Water:

This is the least expensive but most important ingredient in concrete. The water, which is used for making concrete, should be clean and free from harmful impurities such alkali, and acid etc. in general, the water is fit for drinking, should be used for concrete. Water confirming to IS 456-2000.

S.no	Mix	Cement	Fly 🤇	Fine	Coarse	Recycled	Superplasticizer	w/c
	designation	in kg	ash kg	aggregate	aggregate	aggregate	(grams)	ratio
			(5%,)	in kg	in kg	Kg		
						(5%,10%,15%,		
						20%,25%		
						30%,35%,40%)		
1.	SCC	1.283	0.106	3. <mark>685</mark>	6.02	0	20	0.45
2.	SCC-R5	1.283	0.106	3.685	5.711	0.30	20	0.45
3.	SCC-R10	1.283	0.106	3.685	5.41	0.60	20	0.45
4.	SCC-R15	1.283		3.685	5.11	0.90	20	0.45
5.	SCC-R20	1.283	0.106	3.685	4.80	1.20	20	0.45
6.	SCC-R25	1.283	0.106	3.685	4.50	1.50	20	0.45
7.	SCC-R30	1.283	0.106	3.685	4.20	1.80	20	0.45
8.	SCC-R35	1.283	0.106	3.6 <mark>85</mark>	3.90	2.10	20	0.45
9.	SCC-R40	1.283	0.106	3.685	3.60	2.40	20	0.45

Mix Design of M30 Grade Concrete

4. Mix design

Cement	Coarse aggregate	Fine aggregate	water					
400 kg/m3	1134.3 kg/m3	695.2176 kg/m3	160					
1	1.73	2.86	0.45					

S.no	Mix	Cement	Fly	Fine	Coarse	Recycled	Superplasticizer	w/c
	designation	in kg	ash kg	aggregate	aggregate	aggregate	(grams)	ratio
			(5%,)	in kg	in kg	Kg (5%,10%,15%,		
						20%,25%		
						30%,35%,40%)		
1.	SCC	1.283	0.0675	2.346	3.828	0	15	0.45
2.	SCC-R5	1.283	0.0675	2.346	3.637	0.192	15	0.45
3.	SCC-R10	1.283	0.0675	2.346	3.4475	0.383	15	0.45
4.	SCC-R15	1.283	0.0675	2.346	3.254	0.574	15	0.45
5.	SCC-R20	1.283	0.0675	2.346	3.062	0.765	15	0.45
6.	SCC-R25	1.283	0.0675	2.346	2.87	0.957	15	0.45
7.	SCC-R30	1.283	0.0675	2.346	3.67	1.148	15	0.45
8.	SCC-R35	1.283	0.0675	2.346	2.488	1.334	15	0.45
9.	SCC-R40	1.283	0.0675	2.346	2.294	1.531	15	0.45

TABLE 5 MIX DESIGN RATIO

Table 6 QUANTITIES OF MATERIAL FOR CUBES

© 2019 JETIR April 2019, Volume 6, Issue 4

www.jetir.org (ISSN-2349-5162)

S.n) Mix designation	Cement in kg	Fly ash kg (5%,)	Fine aggregate in kg	Coarse aggregate in kg	Recycled aggregate Kg (5%,10%,15%, 20%,25% 30%,35%,40%)	Superplasticizer (grams)	w/c ratio
1	. scc	1.9	0.1	3.685	5.672	0	56.7	0.45
2	SCC-R5	1.9	0.1	3.685	5.38	0.28	56.7	0.45
3	SCC-R10	1.9	0.1	3.685	5.10	0.56	56.7	0.45
4	SCC-R15	1.9	0.1	3.685	4.82	0.85	56.7	0.45
4	5. SCC-R20	1.9	0.1	3.685	4.53	1.13	56.7	0.45
(5. SCC-R25	1.9	0.1	3.685	4.25	1.41	56.7	0.45
7	. SCC-R30	1.9	0.1	3.685	3.97	1.70	56.7	0.45
8	3. SCC-R35	1.9	0.1	3.685	3.68	1.98	56.7	0.45
9	9. SCC-R40	1.9	0.1	3.685	3.40	2.26	56.7	0.45

TABLE 7 QUANTITIES OF MATERIALS FOR CYLINDERS

S.no	Mix	Cement	Fly	Fine	Coarse	Recycled aggregate	Superplasticizer	w/c
	Designation	in kg	ash	aggregate	aggregate	kg (5%,10%,15%,	(grams)	Ratio
			kg	in kg	in kg	20%,25%		
			(5%,)			30%,35%,40%)		
1.	SCC	1.9	0.1	3.685	5.672	0	56.7	0.45
2.	SCC-R5	1.9	0.1	3.685	5.38	0.28	56.7	0.45
3.	SCC-R10	1.9	0.1	3.685	5.10	0.56	56.7	0.45
4.	SCC-R15	1.9	0.1	3.685	4.82	0.85	56.7	0.45
5.	SCC-R20	1.9	0.1	3.685	4.53	1.13	56.7	0.45
6.	SCC-R25	1.9	0.1	3.685	4.25	1.41	56.7	0.45
7.	SCC-R30	1.9	0.1	3.685	3.97	1.70	56.7	0.45
8.	SCC-R35	1.9	0.1	3.685	3.68	1.98	56.7	0.45
9.	SCC-R40	1.9	0.1	3.685	3.40	2.26	56.7	0.45

TABLE 8 QUANTITIES OF MATERIALS FOR BEAMS

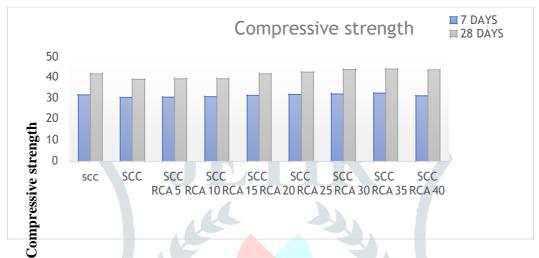
5.EXPERIMENTAL METHOD

The methodology of the present thesis work contains collection of raw materials, determining the physical properties of the collected materials and confirming the raw results to the standard values. With M30 grade mix designs desired mix proportion is determined and further work was continued using those proportions by increasing the percentage of fly ash and recycled aggregate used as a partial replacement of cement and coarse aggregate respectively. Hardened concrete tests like compressive test, flexural test and tensile test were conducted and results were determined.

MIX	SLUMP FLOW (MM)	T 50 CM SLUMP FLOW (SEC)	L BOX (H /H) 2 1	U -BOX	J – RING
0%	705	4.76	0.92	27	4.76
5%	702	4.66	0.89	26.8	4.72
10%	699	4.53	0.85	26.5	4.64
15%	697	4.44	0.84	26.4	4.62
20%	696	4.36	0.83	26.2	4.59
25%	694	4.32	0.82	26	4.54
30%	691	4.24	0.81	25	4.52
35%	685	4.11	0.80	25	4.36
40%	682	4.10	0.80	25	4.24

Table 9: Tests on fresh concrete properties

COMPRESSIVE STRENGTH:

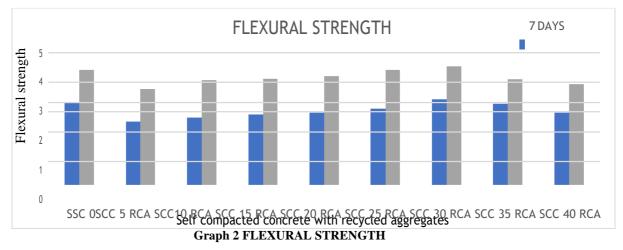

The compressive strength is measured using both cube specimens. The size of the cube specimen is 150 mm \times 150 mm \times 150 mm and size of the cylindrical specimen is 100 mm diameter and 300 mm height. The compressive strength of three cubes and three cylinders are measured after 7, 28 days.

© 2019 JETIR April 2019, Volume 6, Issue 4

www.jetir.org (ISSN-2349-5162)

Mix	7-days Compressive	28-days Compressive
	Strength (N/mm ²)	Strength (N/mm ²)
SCC	31.65	41.70
SCC-RCA 5	30.51	39.2
SCC-RCA 10	30.72	39.48
SCC-RCA 15	30.87	39.48
SCC-RCA 20	31.52	41.65
SCC-RCA 25	31.95	42.56
SCC-RCA 30	32.25	43.85
SCC-RCA 35	32.65	44.05
SCC-RAC 40	31.36	43.55
T 11	10.0	

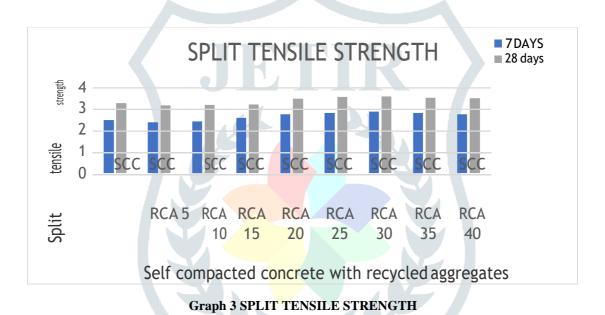
Table 10: Compressive Strength



Self compacted concrete with recycled aggregates

Specifications	7-days Flexural	28-days Flexural
	Strength (N/mm ²)	Strength (N/mm ²)
SCC	2.8	3.90
SCC-RCA 5	2.14	-3.25
SCC-RCA 10	2.28	3.55
SCC-RCA 15	2.39	3.60
SCC-RCA 20	2.45	3.69
SCC-RCA 25	2.59	3.89
SCC-RCA 30	2.89	4.01
SCC-RCA 35	2.75	3.58
SCC-RCA 40	2.45	3.41

GRAPH 1 COMPRESIVE STRENGTH FLEXURAL STRENGTH:


Table11: Flexural strength

SPLIT TENSILE STRENGTH:

Specifications	7-days Split tensile strength (N/mm ²)	28-days Split tensile strength (N/mm ²)
SCC	2.53	3.55
SCC-RCA 5	2.31	3.00
SCC-RCA 10	2.45	3.15
SCC-RCA 15	2.55	3.33
SCC-RCA 20	2.70	3.41
SCC-RCA 25	2.86	3.6
SCC-RCA 30	2.90	3.75
SCC-RCA 35	2.77	3.42
SCC-RCA 40	2.56	2.95

Table .12: Split tensile strength

- □ The test results indicate that the compressive strength, flexural strength and split tensile strength of Selfcompacting concrete with recycled aggregate is less than the self-compacting concrete.
- □ The compressive strength, flexural strength and split tensile strength of Self-compacting concrete increases with the increase in the amount of recycled aggregate.
- □ The test result indicates that in 28 days test Self-compacting concrete marginally achieves required compressive strength up to 35% replacement Recycled coarse aggregate.
- □ The test result indicates that in 28 days test Self-compacting concrete marginally achieves required Flexural strength up to 30% replacement Recycled coarse aggregate.
- □ The test result indicates that in 28 days test Self-compacting concrete marginally achieves required split tensile strength up to 30% replacement Recycled coarse aggregate.

SCOPE OF FUTURE WORK

- □ Self-compacting concrete produces large benefits and advantages over normal or regular concrete like, labor reduction, accelerates over normal or work, superior strength and durability and produces good surface finish etc....
- □ To achieve the above properties of self-compacting concrete it requires a proper mix proportion. This can be resulted by making many trail mixes. This trail mixes are produced by proper mix design.
- □ It is used for the smaller construction like individual house, small buildings, kerb etc....
- □ The adequate compaction and homogeneity of the cast concrete and to facilitate its placement especially in structures with congested reinforcement and restricted areas, self-compacting concrete has been introduced.

REFERENCES

- □ Kou, S.C., Poon, C.S., 2009. Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates, Cement and Concrete Composites 31, pp. 622-627.
- □ Grdic, Z.J., Troplicic-curcic, G.A., Despotovic, I.M., Ristic, N.S., 2010. Propertis of self-compacting concrete prepared with coarse recycled concrete aggregate. Construction and Building Materials 24, pp. 1129-1133.
- □ Fonseca, N., Brito, J. D., Evangelista, L., 2011. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites 33, pp. 637-643.
- Uysal, M., Yilmaz, K., 2011. Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites 33, pp. 771-776.
- □ Zhao, H., Sun, W., Wu, X., Gao, B. 2012. The effect of coarse aggregate gradation on the properties of self-compacting concrete. Materials and Design, 40, pp. 109-116.
- Uysal, 2012. The influence of coarse aggregate type on mechanical properties of fly ash additive selfcompacting concrete. Construction and Building Materials 37, pp. 533-540.
- IS: 10262 (1982) (Reaffirmed 1999), Recommended Guidelines for Concrete Mix Design. Bureau of Indian Standards, Manak Bavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- SP 23 (1982), Handbook on concrete mixes (based on Indian Standards). Bureau of Indian Standards, Manak Bavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- □ IS: 1489 (Part I): (1991), Indian Standard, Portland Pozzolana Cement Specification, (Third Revision). Bureau of Indian Standards, Manak Bavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- □ IS: 383 (1970), Indian Standard specification for coarse and fine aggregates from natural sources for concrete (second revision). Bureau of Indian Standards, Manak Bavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002.
- EFNARC (2005), The European guidelines for self-compacting concrete; May 2005, pp. 1-63.

